The Verge Stated It's Technologically Impressive
andywinston26 於 2 周之前 修改了此頁面


Announced in 2016, Gym is an open-source Python library designed to assist in the development of support learning algorithms. It aimed to standardize how environments are defined in AI research, making released research more quickly reproducible [24] [144] while providing users with a simple user interface for engaging with these environments. In 2022, new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support knowing (RL) research study on computer game [147] using RL algorithms and study generalization. Prior RL research focused mainly on enhancing agents to fix single jobs. Gym Retro provides the ability to generalize between games with comparable ideas but different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents at first lack understanding of how to even stroll, however are offered the objectives of learning to move and to push the opposing representative out of the ring. [148] Through this adversarial learning process, engel-und-waisen.de the agents find out how to adjust to altering conditions. When an agent is then gotten rid of from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives might produce an intelligence "arms race" that could increase an agent's ability to operate even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that learn to play against human gamers at a high skill level completely through trial-and-error algorithms. Before becoming a team of 5, the very first public presentation took place at The International 2017, the annual premiere champion competition for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for two weeks of actual time, and that the knowing software application was a step in the instructions of producing software that can manage intricate tasks like a surgeon. [152] [153] The system uses a kind of reinforcement learning, as the bots discover gradually by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full group of 5, and they were able to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, however wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public look came later that month, where they played in 42,729 total video games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the obstacles of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has demonstrated the usage of deep support knowing (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device learning to train a Shadow Hand, a human-like robot hand, to manipulate physical things. [167] It discovers entirely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation issue by using domain randomization, a simulation approach which exposes the student to a variety of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB cams to enable the robotic to manipulate an arbitrary object by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could resolve a Rubik's Cube. The robotic was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to design. OpenAI did this by improving the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of generating progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let developers call on it for "any English language AI job". [170] [171]
Text generation

The business has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and process long-range dependencies by pre-training on a varied corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the successor to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with only restricted demonstrative variations at first released to the public. The complete variation of GPT-2 was not right away launched due to issue about prospective abuse, including applications for composing phony news. [174] Some professionals expressed uncertainty that GPT-2 posed a considerable danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to discover "neural fake news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be impossible to filter". [176] In November 2019, OpenAI released the total version of the GPT-2 language model. [177] Several websites host interactive demonstrations of different circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue not being watched language designs to be general-purpose learners, illustrated by GPT-2 attaining modern accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by using byte pair encoding. This allows representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI stated that the full version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 designs with as few as 125 million parameters were likewise trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and could generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 significantly enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs might be approaching or encountering the basic capability constraints of predictive language designs. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the full GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not immediately launched to the public for issues of possible abuse, although OpenAI planned to allow gain access to through a paid cloud API after a two-month free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can create working code in over a lots shows languages, most efficiently in Python. [192]
Several issues with problems, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been implicated of emitting copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would terminate support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the upgraded innovation passed a simulated law school bar exam with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise check out, examine or produce as much as 25,000 words of text, and compose code in all significant programs languages. [200]
Observers reported that the version of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has declined to expose various technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained state-of-the-art outcomes in voice, multilingual, and vision benchmarks, setiathome.berkeley.edu setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized variation of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly helpful for enterprises, startups and developers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have actually been developed to take more time to consider their reactions, resulting in greater precision. These models are particularly reliable in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking design. OpenAI likewise revealed o3-mini, a lighter and much faster version of OpenAI o3. As of December 21, 2024, this design is not available for public use. According to OpenAI, they are testing o3 and oeclub.org o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these models. [214] The model is called o3 instead of o2 to avoid confusion with telecoms providers O2. [215]
Deep research

Deep research study is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to perform substantial web surfing, information analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic similarity between text and images. It can significantly be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to interpret natural language inputs (such as "a green leather bag formed like a pentagon" or "an isometric view of an unfortunate capybara") and generate corresponding images. It can create pictures of reasonable objects ("a stained-glass window with a picture of a blue strawberry") as well as items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded version of the design with more realistic outcomes. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a new simple system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective model better able to generate images from complex descriptions without manual prompt engineering and render complex details like hands and text. [221] It was launched to the general public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can generate videos based upon brief detailed triggers [223] along with extend existing videos forwards or backwards in time. [224] It can generate videos with resolution up to 1920x1080 or 1080x1920. The maximal length of produced videos is unidentified.

Sora's advancement team called it after the Japanese word for "sky", to signify its "limitless innovative capacity". [223] Sora's innovation is an adaptation of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos accredited for that purpose, but did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it might produce videos as much as one minute long. It likewise shared a highlighting the methods utilized to train the design, and the design's abilities. [225] It acknowledged a few of its drawbacks, including battles imitating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", but kept in mind that they must have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, significant entertainment-industry figures have actually shown substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the innovation's capability to create sensible video from text descriptions, citing its potential to revolutionize storytelling and content creation. He said that his enjoyment about Sora's possibilities was so strong that he had chosen to stop briefly prepare for expanding his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a big dataset of varied audio and is likewise a multi-task model that can carry out multilingual speech acknowledgment in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to begin fairly but then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs song samples. OpenAI specified the songs "show regional musical coherence [and] follow standard chord patterns" but acknowledged that the songs lack "familiar larger musical structures such as choruses that repeat" and that "there is a significant space" in between Jukebox and human-generated music. The Verge mentioned "It's technically remarkable, even if the outcomes seem like mushy versions of tunes that may feel familiar", while Business Insider stated "remarkably, some of the resulting tunes are memorable and sound genuine". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches devices to dispute toy issues in front of a human judge. The function is to research study whether such an approach might help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of 8 neural network models which are often studied in interpretability. [240] Microscope was developed to evaluate the functions that form inside these neural networks quickly. The designs included are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool developed on top of GPT-3 that offers a conversational user interface that enables users to ask questions in natural language. The system then responds with a response within seconds.