# 53 | 组合模式:如何设计实现支持递归遍历的文件系统目录树结构? 结构型设计模式就快要讲完了,还剩下两个不那么常用的:组合模式和享元模式。今天,我们来讲一下**组合模式**(Composite Design Pattern)。 组合模式跟我们之前讲的面向对象设计中的“组合关系(通过组合来组装两个类)”,完全是两码事。这里讲的“组合模式”,主要是用来处理树形结构数据。这里的“数据”,你可以简单理解为一组对象集合,待会我们会详细讲解。 正因为其应用场景的特殊性,数据必须能表示成树形结构,这也导致了这种模式在实际的项目开发中并不那么常用。但是,一旦数据满足树形结构,应用这种模式就能发挥很大的作用,能让代码变得非常简洁。 话不多说,让我们正式开始今天的学习吧! ## 组合模式的原理与实现 在GoF的《设计模式》一书中,组合模式是这样定义的: > Compose objects into tree structure to represent part-whole hierarchies.Composite lets client treat individual objects and compositions of objects uniformly. 翻译成中文就是:将一组对象组织(Compose)成树形结构,以表示一种“部分-整体”的层次结构。组合让客户端(在很多设计模式书籍中,“客户端”代指代码的使用者。)可以统一单个对象和组合对象的处理逻辑。 接下来,对于组合模式,我举个例子来给你解释一下。 假设我们有这样一个需求:设计一个类来表示文件系统中的目录,能方便地实现下面这些功能: * 动态地添加、删除某个目录下的子目录或文件; * 统计指定目录下的文件个数; * 统计指定目录下的文件总大小。 我这里给出了这个类的骨架代码,如下所示。其中的核心逻辑并未实现,你可以试着自己去补充完整,再来看我的讲解。在下面的代码实现中,我们把文件和目录统一用FileSystemNode类来表示,并且通过isFile属性来区分。 ``` public class FileSystemNode { private String path; private boolean isFile; private List subNodes = new ArrayList<>(); public FileSystemNode(String path, boolean isFile) { this.path = path; this.isFile = isFile; } public int countNumOfFiles() { // TODO:... } public long countSizeOfFiles() { // TODO:... } public String getPath() { return path; } public void addSubNode(FileSystemNode fileOrDir) { subNodes.add(fileOrDir); } public void removeSubNode(FileSystemNode fileOrDir) { int size = subNodes.size(); int i = 0; for (; i < size; ++i) { if (subNodes.get(i).getPath().equalsIgnoreCase(fileOrDir.getPath())) { break; } } if (i < size) { subNodes.remove(i); } } } ``` 实际上,如果你看过我的《数据结构与算法之美》专栏,想要补全其中的countNumOfFiles()和countSizeOfFiles()这两个函数,并不是件难事,实际上这就是树上的递归遍历算法。对于文件,我们直接返回文件的个数(返回1)或大小。对于目录,我们遍历目录中每个子目录或者文件,递归计算它们的个数或大小,然后求和,就是这个目录下的文件个数和文件大小。 我把两个函数的代码实现贴在下面了,你可以对照着看一下。 ``` public int countNumOfFiles() { if (isFile) { return 1; } int numOfFiles = 0; for (FileSystemNode fileOrDir : subNodes) { numOfFiles += fileOrDir.countNumOfFiles(); } return numOfFiles; } public long countSizeOfFiles() { if (isFile) { File file = new File(path); if (!file.exists()) return 0; return file.length(); } long sizeofFiles = 0; for (FileSystemNode fileOrDir : subNodes) { sizeofFiles += fileOrDir.countSizeOfFiles(); } return sizeofFiles; } ``` 单纯从功能实现角度来说,上面的代码没有问题,已经实现了我们想要的功能。但是,如果我们开发的是一个大型系统,从扩展性(文件或目录可能会对应不同的操作)、业务建模(文件和目录从业务上是两个概念)、代码的可读性(文件和目录区分对待更加符合人们对业务的认知)的角度来说,我们最好对文件和目录进行区分设计,定义为File和Directory两个类。 按照这个设计思路,我们对代码进行重构。重构之后的代码如下所示: ``` public abstract class FileSystemNode { protected String path; public FileSystemNode(String path) { this.path = path; } public abstract int countNumOfFiles(); public abstract long countSizeOfFiles(); public String getPath() { return path; } } public class File extends FileSystemNode { public File(String path) { super(path); } @Override public int countNumOfFiles() { return 1; } @Override public long countSizeOfFiles() { java.io.File file = new java.io.File(path); if (!file.exists()) return 0; return file.length(); } } public class Directory extends FileSystemNode { private List subNodes = new ArrayList<>(); public Directory(String path) { super(path); } @Override public int countNumOfFiles() { int numOfFiles = 0; for (FileSystemNode fileOrDir : subNodes) { numOfFiles += fileOrDir.countNumOfFiles(); } return numOfFiles; } @Override public long countSizeOfFiles() { long sizeofFiles = 0; for (FileSystemNode fileOrDir : subNodes) { sizeofFiles += fileOrDir.countSizeOfFiles(); } return sizeofFiles; } public void addSubNode(FileSystemNode fileOrDir) { subNodes.add(fileOrDir); } public void removeSubNode(FileSystemNode fileOrDir) { int size = subNodes.size(); int i = 0; for (; i < size; ++i) { if (subNodes.get(i).getPath().equalsIgnoreCase(fileOrDir.getPath())) { break; } } if (i < size) { subNodes.remove(i); } } } ``` 文件和目录类都设计好了,我们来看,如何用它们来表示一个文件系统中的目录树结构。具体的代码示例如下所示: ``` public class Demo { public static void main(String[] args) { /** * / * /wz/ * /wz/a.txt * /wz/b.txt * /wz/movies/ * /wz/movies/c.avi * /xzg/ * /xzg/docs/ * /xzg/docs/d.txt */ Directory fileSystemTree = new Directory("/"); Directory node_wz = new Directory("/wz/"); Directory node_xzg = new Directory("/xzg/"); fileSystemTree.addSubNode(node_wz); fileSystemTree.addSubNode(node_xzg); File node_wz_a = new File("/wz/a.txt"); File node_wz_b = new File("/wz/b.txt"); Directory node_wz_movies = new Directory("/wz/movies/"); node_wz.addSubNode(node_wz_a); node_wz.addSubNode(node_wz_b); node_wz.addSubNode(node_wz_movies); File node_wz_movies_c = new File("/wz/movies/c.avi"); node_wz_movies.addSubNode(node_wz_movies_c); Directory node_xzg_docs = new Directory("/xzg/docs/"); node_xzg.addSubNode(node_xzg_docs); File node_xzg_docs_d = new File("/xzg/docs/d.txt"); node_xzg_docs.addSubNode(node_xzg_docs_d); System.out.println("/ files num:" + fileSystemTree.countNumOfFiles()); System.out.println("/wz/ files num:" + node_wz.countNumOfFiles()); } } ``` 我们对照着这个例子,再重新看一下组合模式的定义:“将一组对象(文件和目录)组织成树形结构,以表示一种‘部分-整体’的层次结构(目录与子目录的嵌套结构)。组合模式让客户端可以统一单个对象(文件)和组合对象(目录)的处理逻辑(递归遍历)。” 实际上,刚才讲的这种组合模式的设计思路,与其说是一种设计模式,倒不如说是对业务场景的一种数据结构和算法的抽象。其中,数据可以表示成树这种数据结构,业务需求可以通过在树上的递归遍历算法来实现。 ## 组合模式的应用场景举例 刚刚我们讲了文件系统的例子,对于组合模式,我这里再举一个例子。搞懂了这两个例子,你基本上就算掌握了组合模式。在实际的项目中,遇到类似的可以表示成树形结构的业务场景,你只要“照葫芦画瓢”去设计就可以了。 假设我们在开发一个OA系统(办公自动化系统)。公司的组织结构包含部门和员工两种数据类型。其中,部门又可以包含子部门和员工。在数据库中的表结构如下所示: ![](https://static001.geekbang.org/resource/image/5b/8b/5b19dc0c296f728328794eab1f16a38b.jpg) 我们希望在内存中构建整个公司的人员架构图(部门、子部门、员工的隶属关系),并且提供接口计算出部门的薪资成本(隶属于这个部门的所有员工的薪资和)。 部门包含子部门和员工,这是一种嵌套结构,可以表示成树这种数据结构。计算每个部门的薪资开支这样一个需求,也可以通过在树上的遍历算法来实现。所以,从这个角度来看,这个应用场景可以使用组合模式来设计和实现。 这个例子的代码结构跟上一个例子的很相似,代码实现我直接贴在了下面,你可以对比着看一下。其中,HumanResource是部门类(Department)和员工类(Employee)抽象出来的父类,为的是能统一薪资的处理逻辑。Demo中的代码负责从数据库中读取数据并在内存中构建组织架构图。 ``` public abstract class HumanResource { protected long id; protected double salary; public HumanResource(long id) { this.id = id; } public long getId() { return id; } public abstract double calculateSalary(); } public class Employee extends HumanResource { public Employee(long id, double salary) { super(id); this.salary = salary; } @Override public double calculateSalary() { return salary; } } public class Department extends HumanResource { private List subNodes = new ArrayList<>(); public Department(long id) { super(id); } @Override public double calculateSalary() { double totalSalary = 0; for (HumanResource hr : subNodes) { totalSalary += hr.calculateSalary(); } this.salary = totalSalary; return totalSalary; } public void addSubNode(HumanResource hr) { subNodes.add(hr); } } // 构建组织架构的代码 public class Demo { private static final long ORGANIZATION_ROOT_ID = 1001; private DepartmentRepo departmentRepo; // 依赖注入 private EmployeeRepo employeeRepo; // 依赖注入 public void buildOrganization() { Department rootDepartment = new Department(ORGANIZATION_ROOT_ID); buildOrganization(rootDepartment); } private void buildOrganization(Department department) { List subDepartmentIds = departmentRepo.getSubDepartmentIds(department.getId()); for (Long subDepartmentId : subDepartmentIds) { Department subDepartment = new Department(subDepartmentId); department.addSubNode(subDepartment); buildOrganization(subDepartment); } List employeeIds = employeeRepo.getDepartmentEmployeeIds(department.getId()); for (Long employeeId : employeeIds) { double salary = employeeRepo.getEmployeeSalary(employeeId); department.addSubNode(new Employee(employeeId, salary)); } } } ``` 我们再拿组合模式的定义跟这个例子对照一下:“将一组对象(员工和部门)组织成树形结构,以表示一种‘部分-整体’的层次结构(部门与子部门的嵌套结构)。组合模式让客户端可以统一单个对象(员工)和组合对象(部门)的处理逻辑(递归遍历)。” ## 重点回顾 好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要重点掌握的内容。 组合模式的设计思路,与其说是一种设计模式,倒不如说是对业务场景的一种数据结构和算法的抽象。其中,数据可以表示成树这种数据结构,业务需求可以通过在树上的递归遍历算法来实现。 组合模式,将一组对象组织成树形结构,将单个对象和组合对象都看做树中的节点,以统一处理逻辑,并且它利用树形结构的特点,递归地处理每个子树,依次简化代码实现。使用组合模式的前提在于,你的业务场景必须能够表示成树形结构。所以,组合模式的应用场景也比较局限,它并不是一种很常用的设计模式。 ## 课堂讨论 在文件系统那个例子中,countNumOfFiles()和countSizeOfFiles()这两个函数实现的效率并不高,因为每次调用它们的时候,都要重新遍历一遍子树。有没有什么办法可以提高这两个函数的执行效率呢(注意:文件系统还会涉及频繁的删除、添加文件操作,也就是对应Directory类中的addSubNode()和removeSubNode()函数)? 欢迎留言和我分享你的想法。如果有收获,也欢迎你把这篇文章分享给你的朋友。