上一节课中,我们通过两个实战案例,讲解了单例模式的一些应用场景,比如,避免资源访问冲突、表示业务概念上的全局唯一类。除此之外,我们还学习了Java语言中,单例模式的几种实现方法。如果你熟悉的是其他编程语言,不知道你课后有没有自己去对照着实现一下呢?
尽管单例是一个很常用的设计模式,在实际的开发中,我们也确实经常用到它,但是,有些人认为单例是一种反模式(anti-pattern),并不推荐使用。所以,今天,我就针对这个说法详细地讲讲这几个问题:单例这种设计模式存在哪些问题?为什么会被称为反模式?如果不用单例,该如何表示全局唯一类?有何替代的解决方案?
话不多说,让我们带着这些问题,正式开始今天的学习吧!
大部分情况下,我们在项目中使用单例,都是用它来表示一些全局唯一类,比如配置信息类、连接池类、ID生成器类。单例模式书写简洁、使用方便,在代码中,我们不需要创建对象,直接通过类似IdGenerator.getInstance().getId()这样的方法来调用就可以了。但是,这种使用方法有点类似硬编码(hard code),会带来诸多问题。接下来,我们就具体看看到底有哪些问题。
我们知道,OOP的四大特性是封装、抽象、继承、多态。单例这种设计模式对于其中的抽象、继承、多态都支持得不好。为什么这么说呢?我们还是通过IdGenerator这个例子来讲解。
public class Order {
public void create(...) {
//...
long id = IdGenerator.getInstance().getId();
//...
}
}
public class User {
public void create(...) {
// ...
long id = IdGenerator.getInstance().getId();
//...
}
}
IdGenerator的使用方式违背了基于接口而非实现的设计原则,也就违背了广义上理解的OOP的抽象特性。如果未来某一天,我们希望针对不同的业务采用不同的ID生成算法。比如,订单ID和用户ID采用不同的ID生成器来生成。为了应对这个需求变化,我们需要修改所有用到IdGenerator类的地方,这样代码的改动就会比较大。
public class Order {
public void create(...) {
//...
long id = IdGenerator.getInstance().getId();
// 需要将上面一行代码,替换为下面一行代码
long id = OrderIdGenerator.getIntance().getId();
//...
}
}
public class User {
public void create(...) {
// ...
long id = IdGenerator.getInstance().getId();
// 需要将上面一行代码,替换为下面一行代码
long id = UserIdGenerator.getIntance().getId();
}
}
除此之外,单例对继承、多态特性的支持也不友好。这里我之所以会用“不友好”这个词,而非“完全不支持”,是因为从理论上来讲,单例类也可以被继承、也可以实现多态,只是实现起来会非常奇怪,会导致代码的可读性变差。不明白设计意图的人,看到这样的设计,会觉得莫名其妙。所以,一旦你选择将某个类设计成到单例类,也就意味着放弃了继承和多态这两个强有力的面向对象特性,也就相当于损失了可以应对未来需求变化的扩展性。
我们知道,代码的可读性非常重要。在阅读代码的时候,我们希望一眼就能看出类与类之间的依赖关系,搞清楚这个类依赖了哪些外部类。
通过构造函数、参数传递等方式声明的类之间的依赖关系,我们通过查看函数的定义,就能很容易识别出来。但是,单例类不需要显示创建、不需要依赖参数传递,在函数中直接调用就可以了。如果代码比较复杂,这种调用关系就会非常隐蔽。在阅读代码的时候,我们就需要仔细查看每个函数的代码实现,才能知道这个类到底依赖了哪些单例类。
我们知道,单例类只能有一个对象实例。如果未来某一天,我们需要在代码中创建两个实例或多个实例,那就要对代码有比较大的改动。你可能会说,会有这样的需求吗?既然单例类大部分情况下都用来表示全局类,怎么会需要两个或者多个实例呢?
实际上,这样的需求并不少见。我们拿数据库连接池来举例解释一下。
在系统设计初期,我们觉得系统中只应该有一个数据库连接池,这样能方便我们控制对数据库连接资源的消耗。所以,我们把数据库连接池类设计成了单例类。但之后我们发现,系统中有些SQL语句运行得非常慢。这些SQL语句在执行的时候,长时间占用数据库连接资源,导致其他SQL请求无法响应。为了解决这个问题,我们希望将慢SQL与其他SQL隔离开来执行。为了实现这样的目的,我们可以在系统中创建两个数据库连接池,慢SQL独享一个数据库连接池,其他SQL独享另外一个数据库连接池,这样就能避免慢SQL影响到其他SQL的执行。
如果我们将数据库连接池设计成单例类,显然就无法适应这样的需求变更,也就是说,单例类在某些情况下会影响代码的扩展性、灵活性。所以,数据库连接池、线程池这类的资源池,最好还是不要设计成单例类。实际上,一些开源的数据库连接池、线程池也确实没有设计成单例类。
单例模式的使用会影响到代码的可测试性。如果单例类依赖比较重的外部资源,比如DB,我们在写单元测试的时候,希望能通过mock的方式将它替换掉。而单例类这种硬编码式的使用方式,导致无法实现mock替换。
除此之外,如果单例类持有成员变量(比如IdGenerator中的id成员变量),那它实际上相当于一种全局变量,被所有的代码共享。如果这个全局变量是一个可变全局变量,也就是说,它的成员变量是可以被修改的,那我们在编写单元测试的时候,还需要注意不同测试用例之间,修改了单例类中的同一个成员变量的值,从而导致测试结果互相影响的问题。关于这一点,你可以回过头去看下第29讲中的“其他常见的Anti-Patterns:全局变量”那部分的代码示例和讲解。
单例不支持有参数的构造函数,比如我们创建一个连接池的单例对象,我们没法通过参数来指定连接池的大小。针对这个问题,我们来看下都有哪些解决方案。
第一种解决思路是:创建完实例之后,再调用init()函数传递参数。需要注意的是,我们在使用这个单例类的时候,要先调用init()方法,然后才能调用getInstance()方法,否则代码会抛出异常。具体的代码实现如下所示:
public class Singleton {
private static Singleton instance = null;
private final int paramA;
private final int paramB;
private Singleton(int paramA, int paramB) {
this.paramA = paramA;
this.paramB = paramB;
}
public static Singleton getInstance() {
if (instance == null) {
throw new RuntimeException("Run init() first.");
}
return instance;
}
public synchronized static Singleton init(int paramA, int paramB) {
if (instance != null){
throw new RuntimeException("Singleton has been created!");
}
instance = new Singleton(paramA, paramB);
return instance;
}
}
Singleton.init(10, 50); // 先init,再使用
Singleton singleton = Singleton.getInstance();
第二种解决思路是:将参数放到getIntance()方法中。具体的代码实现如下所示:
public class Singleton {
private static Singleton instance = null;
private final int paramA;
private final int paramB;
private Singleton(int paramA, int paramB) {
this.paramA = paramA;
this.paramB = paramB;
}
public synchronized static Singleton getInstance(int paramA, int paramB) {
if (instance == null) {
instance = new Singleton(paramA, paramB);
}
return instance;
}
}
Singleton singleton = Singleton.getInstance(10, 50);
不知道你有没有发现,上面的代码实现稍微有点问题。如果我们如下两次执行getInstance()方法,那获取到的singleton1和signleton2的paramA和paramB都是10和50。也就是说,第二次的参数(20,30)没有起作用,而构建的过程也没有给与提示,这样就会误导用户。这个问题如何解决呢?留给你自己思考,你可以在留言区说说你的解决思路。
Singleton singleton1 = Singleton.getInstance(10, 50);
Singleton singleton2 = Singleton.getInstance(20, 30);
第三种解决思路是:将参数放到另外一个全局变量中。具体的代码实现如下。Config是一个存储了paramA和paramB值的全局变量。里面的值既可以像下面的代码那样通过静态常量来定义,也可以从配置文件中加载得到。实际上,这种方式是最值得推荐的。
public class Config {
public static final int PARAM_A = 123;
public static final int PARAM_B = 245;
}
public class Singleton {
private static Singleton instance = null;
private final int paramA;
private final int paramB;
private Singleton() {
this.paramA = Config.PARAM_A;
this.paramB = Config.PARAM_B;
}
public synchronized static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
刚刚我们提到了单例的很多问题,你可能会说,即便单例有这么多问题,但我不用不行啊。我业务上有表示全局唯一类的需求,如果不用单例,我怎么才能保证这个类的对象全局唯一呢?
为了保证全局唯一,除了使用单例,我们还可以用静态方法来实现。这也是项目开发中经常用到的一种实现思路。比如,上一节课中讲的ID唯一递增生成器的例子,用静态方法实现一下,就是下面这个样子:
// 静态方法实现方式
public class IdGenerator {
private static AtomicLong id = new AtomicLong(0);
public static long getId() {
return id.incrementAndGet();
}
}
// 使用举例
long id = IdGenerator.getId();
不过,静态方法这种实现思路,并不能解决我们之前提到的问题。实际上,它比单例更加不灵活,比如,它无法支持延迟加载。我们再来看看有没有其他办法。实际上,单例除了我们之前讲到的使用方法之外,还有另外一种使用方法。具体的代码如下所示:
// 1. 老的使用方式
public demofunction() {
//...
long id = IdGenerator.getInstance().getId();
//...
}
// 2. 新的使用方式:依赖注入
public demofunction(IdGenerator idGenerator) {
long id = idGenerator.getId();
}
// 外部调用demofunction()的时候,传入idGenerator
IdGenerator idGenerator = IdGenerator.getInsance();
demofunction(idGenerator);
基于新的使用方式,我们将单例生成的对象,作为参数传递给函数(也可以通过构造函数传递给类的成员变量),可以解决单例隐藏类之间依赖关系的问题。不过,对于单例存在的其他问题,比如对OOP特性、扩展性、可测性不友好等问题,还是无法解决。
所以,如果要完全解决这些问题,我们可能要从根上,寻找其他方式来实现全局唯一类。实际上,类对象的全局唯一性可以通过多种不同的方式来保证。我们既可以通过单例模式来强制保证,也可以通过工厂模式、IOC容器(比如Spring IOC容器)来保证,还可以通过程序员自己来保证(自己在编写代码的时候自己保证不要创建两个类对象)。这就类似Java中内存对象的释放由JVM来负责,而C++中由程序员自己负责,道理是一样的。
对于替代方案工厂模式、IOC容器的详细讲解,我们放到后面的章节中讲解。
好了,今天的内容到此就讲完了。我们来一块总结回顾一下,你需要掌握的重点内容。
1.单例存在哪些问题?
2.单例有什么替代解决方案?
为了保证全局唯一,除了使用单例,我们还可以用静态方法来实现。不过,静态方法这种实现思路,并不能解决我们之前提到的问题。如果要完全解决这些问题,我们可能要从根上,寻找其他方式来实现全局唯一类了。比如,通过工厂模式、IOC容器(比如Spring IOC容器)来保证,由程序员自己来保证(自己在编写代码的时候自己保证不要创建两个类对象)。
有人把单例当作反模式,主张杜绝在项目中使用。我个人觉得这有点极端。模式没有对错,关键看你怎么用。如果单例类并没有后续扩展的需求,并且不依赖外部系统,那设计成单例类就没有太大问题。对于一些全局的类,我们在其他地方new的话,还要在类之间传来传去,不如直接做成单例类,使用起来简洁方便。
1.如果项目中已经用了很多单例模式,比如下面这段代码,我们该如何在尽量减少代码改动的情况下,通过重构代码来提高代码的可测试性呢?
public class Demo {
private UserRepo userRepo; // 通过构造哈函数或IOC容器依赖注入
public boolean validateCachedUser(long userId) {
User cachedUser = CacheManager.getInstance().getUser(userId);
User actualUser = userRepo.getUser(userId);
// 省略核心逻辑:对比cachedUser和actualUser...
}
}
2.在单例支持参数传递的第二种解决方案中,如果我们两次执行getInstance(paramA, paramB)方法,第二次传递进去的参数是不生效的,而构建的过程也没有给与提示,这样就会误导用户。这个问题如何解决呢?
Singleton singleton1 = Singleton.getInstance(10, 50);
Singleton singleton2 = Singleton.getInstance(20, 30);
欢迎留言和我分享你的思考和见解。如果有收获,也欢迎你把文章分享给你的朋友。